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Abstract. The tunneling behaviors of the magnetization vector are studied in ferromagnetic systems with
trigonal and hexagonal crystal symmetries, respectively. The Euclidean transition amplitudes between
the energetically degenerate easy directions are evaluated with the help of the dilute instanton-gas ap-
proximation. By using the effective Hamiltonian method, the ground-state tunneling level splittings are
clearly shown for each kind of symmetry and are found to depend on the parity of the total spin of the
ferromagnetic particle. The effective Hamiltonian method is demonstrated to be equivalent to the dilute
instanton-gas approximation. Possible relevance to experiments is discussed.

PACS. 73.40.Gk Tunneling – 75.10.Jm Quantized spin models – 75.45.+j Macroscopic quantum
phenomena in magnetic systems

1 Introduction

Over recent years, owing mainly to the rapid develop-
ment in nanostructure physics and in new technology
of the highly sensitive SQUID magnetometry, there has
been growing interest in studying Macroscopic Quantum
Phenomena (MQP) in magnetic systems. At a sufficiently
low temperature, all the spins in a grain are locked to-
gether by the exchange interaction, and only their global
orientation can change. The magnetic MQP can be largely
classified into Macroscopic Quantum Tunneling (MQT)
and Coherence (MQC). The phenomenon of MQT corre-
sponds to the escaping of the magnetization vector from a
metastable state by quantum tunneling in the presence of
an external magnetic field, while MQC corresponds to the
resonance of the magnetization vector between neighbor-
ing degenerate states separated by the magnetocrystalline
anisotropy or the applied magnetic field. Particular cases
of the magnetic MQP are quantum tunneling of the mag-
netization vector in single-domain ferromagnetic (FM)
nanoparticles [1–6], quantum nucleation of the FM bubble
[7,8], quantum depinning of the FM domain wall from de-
fects [9–12], and quantum tunneling of the Néel vector
in single-domain antiferromagnetic (AFM) nanoparticles
[13–18]. There have been many experiments involving res-
onance measurements [19], magnetic relaxation [20] and
hysteresis loop study [21] for various systems, which seem
to support the idea of quantum magnetic tunneling.
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One of the most striking effects in magnetic MQP is
that for some spin systems with high symmetries, the tun-
neling behaviors seem sensitive to the parity of the total
spin of the magnetic nanoparticle. Because of the magne-
tocrystalline anisotropies and external magnetic fields, the
energy of a single-domain FM nanoparticle depends on the
orientation of the magnetization vector. Therefore, there
are usually two or more energetically degenerate easy di-
rections, and thus different tunneling paths connecting
the same initial and final states. It has been theoretically
demonstrated that the Berry phase or the Wess-Zumino
term in the magnetic action can lead to the destructive in-
terference between topologically different tunneling paths
for the half-integer total spin FM nanoparticle, and the
quenching of the ground-state tunneling level splitting in
the absence of an external magnetic field [22,23]. This
spin-parity effect can be related to Kramers’ degeneracy
if the magnetic system has time-reversal invariance, but it
can also exist in the system without Kramers’ degeneracy
[24]. A similar effect can take place in the AFM nanoparti-
cle in which only an integer excess spin can tunnel but not
a half-integer one [14,15]. Recently, the quantum interfer-
ence effect has been studied theoretically for the resonant
tunneling of the magnetization vector in the FM system
with an external magnetic field applied along either the
hard [24], easy [25,26] or medium axis [27].

In this paper, we investigate the tunneling behav-
iors in resonant quantum coherence of the magnetization
vector in a single-domain FM nanoparticle with trigonal
and hexagonal crystal symmetries, respectively. Both the
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Wentzel-Kramers-Brillouin (WKB) exponent and the pre-
exponential factors in one instanton’s contribution to the
tunneling level splitting are calculated with the help of the
standard instanton method in spin-coherent-state path in-
tegral [2]. The Euclidean transition amplitudes between
energetically degenerate easy directions are evaluated in
the dilute instanton-gas approximation [28]. The final re-
sults of the ground-state tunneling level splittings are ob-
tained by using a recently proposed method of the effective
Hamiltonian [29,30]. The effective Hamiltonian method is
shown to be equivalent to the dilute instanton-gas approx-
imation [28]. The spin-parity or quantum interference ef-
fect is also discussed for each kind of symmetry. The ther-
modynamic properties of the tunneling states (such as the
specific heat) are found to depend on the parity of the spin
quantum number, which may provide an experimental test
for the quantum interference effect in single-domain FM
nanoparticles.

This paper is organized as follows. In Section 2, we
briefly review some basic ideas of the standard instanton
method for MQT and MQC of the magnetization vector
in the single-domain FM nanoparticle based on the spin-
coherent-state path integral. In Sections 3 and 4, we con-
sider the ground-state tunneling level splittings for the
FM systems with trigonal and hexagonal crystal symme-
tries, respectively. And the conclusions and discussions are
presented in Section 5.

2 The instanton method for MQT and MQC
in the FM system

The system of interest is a single-domain FM nanoparticle
at a temperature well below its anisotropy gap. For such
a spin system, the tunneling splitting for MQC or the
tunneling rate for MQT of the magnetization vector is
determined by the imaginary-time transition amplitude
from an initial state |i〉 to a final state |f〉 as

Ufi = 〈f |e−HT |i〉 =

∫
DΩ exp (−SE) , (1)

where SE is the Euclidean action and DΩ is the measure
of the path integral.

In the spin-coherent-state representation, the Eucli-
dean action for a single-domain FM nanoparticle can be
written as

SE(θ, φ) =
V

~

∫
dτ

[
i
M0

γ

(
dφ

dτ

)
−i
M0

γ

(
dφ

dτ

)
cos θ +E(θ, φ)

]
, (2)

where V is the volume of the FM particle and γ is the
gyromagnetic ratio. M0 = |M| = ~γS/V is the magni-
tude of the magnetization vector M, where S is the to-
tal spin of the FM nanoparticle. The polar angle θ and
the azimuthal angle φ label the spin coherent state |θ, φ〉.
The spin coherent state is defined as the maximum eigen-
states of Sz, rotated into the direction of the unit vector

n = (sin θ cosφ, sin θ sinφ, cos θ). E(θ, φ) in equation (2)
is the total energy of the FM nanoparticle which includes
the magnetocrystalline anisotropy energy and the Zeeman
energy when a magnetic field is applied.

It is noted that the Euclidean action is written in the
north-pole gauge, and the first two terms in equation (2)
define the Wess-Zumino or Berry term which arises
from the nonorthogonality of spin coherent states. The
Wess-Zumino term has a simple geometrical or topologi-
cal interpretation. For a closed path, this term equals −iS
times the area swept out on the unit sphere between the
path and the north pole. The first term in equation (2) is
a total imaginary-time derivative, which has no effect on
the classical equations of motion, but gives the boundary
contribution to the Euclidean action. However, it has been
theoretically demonstrated that this term, known as the
topological term, is crucial for the quantum interference
effect and makes the tunneling behaviors of integer and
half-integer total spins strikingly different [22,23].

In the semiclassical limit, the dominant contribution
to the Euclidean transition amplitude comes from finite
action solutions of the classical equation of motion (in-
stantons). The classical equation of motion for M is given
by (δSE = 0)

i
dM

dτ
= −γM×

dE(M)

dM
, (3)

which can also be expressed as the following equations in
the spherical coordinate system,

i

(
dθ̄

dτ

)
sin θ̄ =

γ

M0

∂E

∂φ
,

i

(
dφ̄

dτ

)
sin θ̄ = −

γ

M0

∂E

∂θ
, (4)

where θ̄ and φ̄ denote the classical path. Note that the
Euclidean action in equation (2) describes the (1⊕ 1)-
dimensional dynamics in the Hamiltonian formulation
with canonical variables φ and pφ = S (1− cos θ).

According to the standard instanton method in spin-
coherent-state path integral, the instanton’s contribution
to the tunneling rate Γ for MQT or the tunneling split-
ting ∆ for MQC (not including the phase factor generated
by the topological term in the Euclidean action) is given
by [2]

Γ (or ∆) = Aωp(Scl/2π)1/2e−Scl , (5)

where ωp is the oscillation frequency in one of the wells
separated by the magnetocrystalline anisotropies and ex-
ternal magnetic fields, and Scl is the classical action or the
WKB exponent which minimizes the Euclidean action in
equation (2). The preexponential factor A originates from
the quantum fluctuations about the classical path, which
can be evaluated by expanding the Euclidean action to
second order in the small fluctuations [2]. In reference [2],
Garg and Kim have presented the general formalism for
calculating both the exponent and the preexponential fac-
tors in the WKB tunneling rate for the single-domain FM
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nanoparticles. In Appendix A of the present work, we ex-
plain briefly the basic idea of this calculation, and then
apply this approach to calculate the tunneling level split-
ting for the FM system with trigonal crystal symmetry (in
Sect. 3) in detail.

3 The MQC for trigonal symmetry

In this section, we investigate the tunneling behaviors
of the magnetization vector in a FM system with trigo-
nal crystal symmetry, i.e., threefold rotational symmetry
around the z axis and reflection symmetry in the x−y
plane. Then the magnetocrystalline anisotropy energy can
be written as [23]

E(θ, φ) = −K1 sin2 θ + [K2 −K
′
2 cos(3φ)] sin3 θ +E0,

(6)

where K1, K2 and K ′2 are the magnetic anisotropy coeffi-
cients satisfying K1 � K2,K

′
2 > 0, and E0 is a constant

which makes E(θ, φ) zero at the initial state. The ground
state of this system corresponds to the magnetization vec-
tor M pointing in one of the three energetically degener-
ate easy directions: θ = π/2, and φ = 0, 2π/3, 4π/3. If
we denote the three states as |1〉, |2〉, and |3〉, other en-
ergy minima repeat the three states with period 2π. So the
magnetization vector can resonate coherently between the
energetically degenerate states.

In the case of very strong anisotropy K1, the mag-
netization vector is forced to lie in the x−y plane. So the
fluctuations of θ about π/2 are small. Writing θ = π/2+α
(|α| � 1), and expanding E(θ, φ) in equation (6) to second
order in α, we obtain

E(α, φ) = K[1− cos(3φ)] +

[
K ′ +

3

2
K cos(3φ)

]
α2, (7)

where K = K ′2, K ′ = K1 − (3/2)K2, and K ′ � K > 0.
Substituting equation (7) into the classical equations

of motion, we obtain the instanton solution:

α = −i

√
4K

2K ′ − 3K

1

cosh(ω0τ)
,

sin2

(
3

2
φ

)
=

1− tanh2(ω0τ)

1− λ tanh2(ω0τ)
, (8)

which corresponds to the variation of φ from φ = 0 at
τ = −∞ to φ = 2π/3 at τ = +∞. ω0 and λ are defined

as ω0 = 3(γ/M0)
√
K(3K + 2K ′) and λ = 6K/(2K ′ +

3K). Using the standard instanton method (for detailed
calculation see Appendix A), we obtain the contribution
to the tunneling splitting (not including the phase factor
generated by the topological term in the Euclidean action)
for the instanton starting from |1〉 and ending at |2〉 as the
following expression,

~∆ =
29/431/2

π1/2
(V K ′)

(
K

K ′

)3/4

S−1/2e−Scl , (9)

where

Scl =
25/2

3

√
K

K ′
S. (10)

S = M0V/~γ is the total spin of the single-domain FM
nanoparticle. Note that both the WKB exponent and
the preexponential factors are obtained exactly in equa-
tions (9, 10).

Including the phase factors generated by the topologi-
cal term in the Euclidean action, the Euclidean transition
amplitude can be expressed as the following equation with
the help of the dilute instanton-gas approximation [28]

〈j′|e−HT |j〉 =

√
ω0

π~
e−ω0T/2

×

m−n=j−j′(mod 3)∑
m,n

(~∆Te−iS2π/3)m(~∆TeiS2π/3)n

m!n!
,

(11)

where |j〉 and |j′〉 denote any two of the three energetically
degenerate easy directions.

The propagators from |1〉 to the other states are found
to be as follows:

〈1|e−HT |1〉 =
1

3

√
ω0

π~
e−ω0T/2

{
exp

[
2~∆T cos

(
2Sπ

3

)]
+ 2 exp

[
−~∆T cos

(
2Sπ

3

)]
× cosh

[
√

3~∆T sin

(
2Sπ

3

)]}
,

〈2|e−HT |1〉 =
1

3

√
ω0

π~
e−ω0T/2

{
exp

[
2~∆T cos

(
2Sπ

3

)]
− exp

[
−~∆T cos

(
2Sπ

3

)]
×

[
cosh

(
√

3~∆T sin

(
2Sπ

3

))
+i
√

3 sinh

(
√

3~∆T sin

(
2Sπ

3

))]}
,

〈3|e−HT |1〉 =
1

3

√
ω0

π~
e−ω0T/2

×

{
exp

[
2~∆T cos

(
2Sπ

3

)]
− exp

[
−~∆T cos

(
2Sπ

3

)]
×

[
cosh

(
√

3~∆T sin

(
2Sπ

3

))
−i
√

3 sinh

(
√

3~∆T sin

(
2Sπ

3

))]}
.

(12)

Now we use the effective Hamiltonian method [29,30] to
evaluate the splittings of the ground state due to the res-
onant quantum tunneling of the magnetization vector be-
tween energetically degenerate states. This approach is
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a development of the tunneling Hamiltonian of Leggett
et al. [29], where the phase factor generated by the topo-
logical term in the Euclidean action is properly incorpo-
rated. The effective Hamiltonian approach is shown to be
equivalent to the dilute instanton-gas approximation [28]
(see Appendix B), while this approach has the advantage
of being very simple and direct. It permits us to obtain the
ground-state tunneling level splittings conveniently and
discuss the degeneracies of the low-lying tunneling levels
in detail.

The effective Hamiltonian of the system can be written
as:

Heff = −~∆M, (13)

where M is a linear operator defined by

M |j〉 = p|j + 1〉+ q|j − 1〉. (14)

The above equation can be viewed as by one step |j〉 goes
to |j + 1〉 forward with weight p, and to |j − 1〉 backward
with weight q. For the trigonal crystal symmetry, the ma-
trix form of M is found to be

[M ] = 〈j′|M |j〉 =

0 q p
p 0 q
q p 0

. (15)

Heff is Hermitian if p = q∗ and can be diagonalized. In
fact they should be specified by

p = q∗ = e−iS2π/3. (16)

A simple diagonalization of Heff shows that the eigenval-
ues of this system depend on the parity of the total spin
S of the FM nanoparticle. If S is an integer, the energies
are ~∆ and −2~∆, the former being doubly degenerate.
If S is a half-integer, the energies are 2~∆ and −~∆, the
latter being doubly degenerate. The energy level spectrum
(corresponding to the ground-state tunneling level split-
tings due to the resonance of the magnetization vector
between energetically degenerate easy directions) for the
half-integer total spin is significantly different from that
for the integer total spin. This spin-parity effect is the
result of quantum interference between topologically dif-
ferent tunneling paths.

4 The MQC for hexagonal symmetry

In this section, we consider MQC of the magnetization
vector in a FM system with hexagonal crystal symme-
try, which has six energetically degenerate easy axes in
the basal plane. Now the magnetocrystalline anisotropy
energy is [2]

E(θ, φ) = −K1 sin2 θ +K2 sin4 θ

+ [K3 −K
′
3 cos(6φ)] sin6 θ +E0, (17)

where K1, K2, K3 and K ′3 are the magnetic anisotropy
coefficients satisfying the condition that K1 � K2,K3,

K ′3 > 0, and E0 is a constant which makes E(θ, φ) zero at
the initial state. The easy directions of this system are at
θ = π/2, and φ = 0, π/3, 2π/3, π, 4π/3, 5π/3. We denote
the six states as |1〉, |2〉, |3〉, |4〉, |5〉, and |6〉, other energy
minima repeat the six states with period 2π.

As K1 � K2,K3,K
′
3 > 0, the magnetization vector

is forced to lie in the x−y plane. So the fluctuations of θ
about π/2 are small. Introducing θ = π/2 + α (|α| � 1),
E(θ, φ) reduces to

E(α, φ) = K[1− cos(6φ)] + [K ′ + 3K cos(6φ)]α2, (18)

where K = K ′3, K ′ = K1− 2K2− 3K3, and K ′ � K > 0.

Substituting equation (18) into the classical equations
of motion, we obtain the instanton solution mapping from
|1〉 to |2〉 as

α = −i

√
2K

2K ′ − 3K

1

cosh(ω0τ)
,

sin2
(
3φ
)

=
1− tanh2(ω0τ)

1− λ tanh2(ω0τ)
, (19)

where ω0 = 6(γ/M0)
√

2K(3K +K ′) and λ = 6K/(K ′ +
3K). The associated instanton’s contribution to the tun-
neling splitting is then found to be

~∆ =
211/431/2

π1/2
(V K ′)

(
K

K ′

)3/4

S−1/2e−Scl , (20)

where

Scl =
23/2

3

√
K

K ′
S. (21)

By using the dilute instanton-gas approximation, the
Euclidean transition amplitude is found to be

〈j′|e−HT |j〉 =

√
ω0

π~
e−ω0T/2

×

m−n=j−j′(mod 6)∑
m,n

(~∆Te−iSπ/3)m(~∆TeiSπ/3)n

m!n!
,

(22)

where |j〉 and |j′〉 are any two of the six energetically de-
generate easy directions, and the phase factors generated
by the topological term in the Euclidean action have been
properly included.

After some complicated calculations, we obtain the
propagators from |1〉 to the other states as the following
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equations,

〈1|e−HT |1〉 =
1

3

√
ω0

π~e
−ω0T/2

{
cosh

[
2~∆T cos

(
Sπ

3

)]
+ 2 cosh

[
~∆T cos

(
Sπ

3

)]
cosh

[√
3~∆T sin

(
Sπ

3

)]}
,

〈2|e−HT |1〉 =
1

3

√
ω0

π~e
−ω0T/2

{
sinh

[
2~∆T cos

(
Sπ

3

)]
+ sinh

[
~∆T cos

(
Sπ

3

)]
cosh

[
√

3~∆T sin

(
Sπ

3

)]
−i
√

3 cosh

[
~∆T cos

(
Sπ

3

)]
sinh

[√
3~∆T sin

(
Sπ

3

)]}
,

〈3|e−HT |1〉 =
1

3

√
ω0

π~e
−ω0T/2

{
cosh

[
2~∆T cos

(
Sπ

3

)]
− cosh

[
~∆T cos

(
Sπ

3

)]
cosh

[
√

3~∆T sin

(
Sπ

3

)]
−i
√

3 sinh

[
~∆T cos

(
Sπ

3

)]
sinh

[
√

3~∆T sin

(
Sπ

3

)]}
,

〈4|e−HT |1〉 =
1

3

√
ω0

π~e
−ω0T/2

{
sinh

[
2~∆T cos

(
Sπ

3

)]
− 2 sinh

[
~∆T cos

(
Sπ

3

)]
cosh

[√
3~∆T sin

(
Sπ

3

)]}
,

〈5|e−HT |1〉 =
1

3

√
ω0

π~e
−ω0T/2

{
cosh

[
2~∆T cos

(
Sπ

3

)]
− cosh

[
~∆T cos

(
Sπ

3

)]
cosh

[
√

3~∆T sin

(
Sπ

3

)]
+i
√

3 sinh

[
~∆T cos

(
Sπ

3

)]
sinh

[
√

3~∆T sin

(
Sπ

3

)]}
,

〈6|e−HT |1〉 =
1

3

√
ω0

π~e
−ω0T/2

{
sinh

[
2~∆T cos

(
Sπ

3

)]
+ sinh

[
~∆T cos

(
Sπ

3

)]
cosh

[√
3~∆T sin

(
Sπ

3

)]
+i
√

3 cosh

[
~∆T cos

(
Sπ

3

)]
sinh

[
√

3~∆T sin

(
Sπ

3

)]}
.

(23)

It is easy to show that 〈4|e−HT |1〉 (i.e. 〈θ = π/2, φ =
π|e−HT |θ = π/2, φ = 0〉) vanishes when S is a half-integer,
indicating degeneracy of the states. This suppression turns
out to be in good agreement with the Kramers’ theo-
rem, which demands that a state with its time-reversed
counterpart should be degenerate for the half-integer to-
tal spin if the Hamiltonian has time-reversal invariance.
This is, however, not the only effect the quantum interfer-
ence results in. In fact, we present the strikingly different
ground-state tunneling level splittings for the integer and
half-integer total spin FM nanoparticles in the following.

We now apply the effective Hamiltonian approach to
obtain the ground-state tunneling level splittings for this

system. For the hexagonal crystal symmetry, the matrix
form of M in equation (13) is found to be

[M ] = 〈j′|M |j〉 =


0 q 0 0 0 p
p 0 q 0 0 0
0 p 0 q 0 0
0 0 p 0 q 0
0 0 0 p 0 q
q 0 0 0 p 0

 , (24)

where

p = q∗ = e−iSπ/3. (25)

Then the energy level spectrum of this system is found to
depend on the parity of the total spin of the single-domain
FM nanoparticle. If S is a half-integer, the energies are√

3~∆, 0 and −
√

3~∆, all the three levels being doubly
degenerate. If S is an integer, the energies are ± 2~∆
and ± ~∆, the latter two levels being doubly degenerate.
It is clearly shown that the ground-state tunneling level
splittings for the half-integer total spin FM particle are
much different form that for the integer total spin one.

5 Conclusions and discussions

In summary, we have investigated the tunneling behaviors
in macroscopic quantum coherence of the magnetization
vector in single-domain FM nanoparticles based on the
standard instanton method in spin-coherent-state path
integral. We consider the magnetocrystalline anisotropy
with the trigonal crystal symmetry and that with the
hexagonal crystal symmetry, which have three and six en-
ergetically degenerate easy directions in the basal plane
respectively. Both the WKB exponents and the preexpo-
nential factors (originated from the small quantum fluctu-
ations about the classical paths) are found exactly for one
instanton’s contribution to the tunneling splitting. The
Euclidean transition amplitudes between any two of the
energetically degenerate easy directions are obtained with
the help of the dilute instanton-gas approximation. And
the final results of the ground-state tunneling level split-
tings are clearly shown for each kind of symmetry by ap-
plying the effective Hamiltonian approach. This Hamil-
tonian approach is shown to be equivalent to the dilute
instanton-gas approximation, which permits us to discuss
the tunneling level spectrum conveniently.

One important conclusion is that for both the trigonal
and hexagonal crystal symmetries, the ground-state tun-
neling level splittings for the half-integer total spin FM
nanoparticle are significantly different from that for the
integer total spin one. For the FM system with biaxial
crystal symmetry, which has two energetically degenerate
easy directions in the basal plane, it has been theoreti-
cally demonstrated that the ground-state tunneling level
splitting is suppressed to zero for the half-integer total
spin FM nanoparticle [22,23]. However, the tunneling level
spectrum for the trigonal or hexagonal symmetry is found
to be much more complex than that for the biaxial sym-
metry. The ground-state tunneling level splittings can be
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nonzero for the trigonal or hexagonal crystal symmetry
even if the total spin of the FM particle is a half-integer.
Note that these spin-parity effects are of topological origin
and thus independent of the magnitude of the total spin
of the single-domain FM nanoparticle.

At the end of this paper, we discuss the possible rel-
evance to the experimental test for the spin-parity ef-
fect in single-domain FM nanoparticles. Recently, there
has been a focus of renewed interest on studying the
quantum tunneling of magnetization in molecular mag-
nets, such as the crystal Mn12 acetate (Mn12Ac) which
has the chemical formula [Mn12O12 (CH3COO)16 (H2O)4]·
2CH3COOH·4H2O [21,31–37]. Experiments involving
magnetization relaxation [31], dynamic susceptibility mea-
surement [32] and hysteresis loop study [21,33–36] indi-
cate that thermally assisted, field-tuned resonant magneti-
zation tunneling takes place between quantum spin states
in a large number of identical Mn12Ac molecules. The
Mn12Ac molecule contains 12 Mn ions which are strongly
bound ferrimagnetically via the superexchange through
oxygen bridges. The ground state of this molecule has a
net spin of S = 10 at low temperatures. The magnetic
interactions between the spins of different molecules can
be negligible since the distance between Mn ions in neigh-
boring molecules is at least 7 Å. Therefore, the Mn12Ac
molecule can be viewed as an ensemble of the magnetic
tunneling states, in close analogy with the two-level sys-
tem in amorphous materials. It is then of interest to study
the contribution of these magnetic tunneling states to
thermodynamic quantities (such as the specific heat) of
the system. Here we shall show that the contribution to
the specific heat for the integer total spin FM particle is
significantly different from that for the half-integer total
spin FM particle at low temperatures.

Since we have already obtained the low-lying tunnel-
ing level spectrum, the partition function of the tunneling
states can be expressed as the following equation for the
FM nanoparticle with trigonal crystal symmetry,

Z = Tr(e−βH) = 2e−~∆β + e2~∆β, ifS is an integer, (26)

and

Z = 2e~∆β + e−2~∆β , ifS is a half-integer, (27)

where ~∆ has been clearly shown in equations (9, 10), and
β = 1/kBT with kB the Boltzmann constant. Then the
specific heat is given by

c = −T
∂2F

∂T 2
, (28)

where

F = −kBT lnZ. (29)

For the trigonal crystal symmetry, we obtain the specific
heat after some algebra,

c =
18~2∆2

kBT 2

e~∆β

(e2~∆β + 2e−~∆β)
2 , ifS is an integer, (30)

while

c =
18~2∆2

kBT 2

e−~∆β

(e−2~∆β + 2e~∆β)
2 , ifS is a half-integer.

(31)

It is clearly shown that the specific heat for the integer
total spin FM nanoparticle is much different from that for
the half-integer total spin one.

Using the similar method, we obtain the specific heat
for the single-domain FM nanoparticle with hexagonal
crystal symmetry as the following equations,

c =
2~2∆2

kBT 2

×
[4 + 5 cosh (2~∆β) cosh (~∆β)− 4 sinh (2~∆β) sinh (~∆β)]

[cosh (2~∆β) + 2 cosh (~∆β)]2
,

(32)

for the integer total spin FM particle, while

c =
3~2∆2

kBT 2

1

cosh2
(√

3~∆β
) , (33)

for the half-integer total spin one, where ~∆ has been
shown in equations (20, 21).

In brief, the heat capacity of the magnetic tunneling
states is found to depend on the parity of the total spin of
the FM nanoparticle, providing a possible experimental
method to examine the theoretical results on the spin-
parity effect. Our results may be useful in the analysis of
further experiments on macroscopic quantum coherence of
the magnetization vector in single-domain FM nanoparti-
cles.

The effects of the environment caused by phonons
[1,38], nuclear spins [39], Stoner excitations and eddy cur-
rents in metallic magnets [11] are crucial in macroscopic
quantum coherence of magnetism. And the most impor-
tant effect is the interaction between the spins of the
magnetic nanoparticle and the spins of the environment,
since the change of a single 1/2 spin of the system might
change the total tunneling picture completely. Whether
the quantum interference effect can be observed experi-
mentally is still an interesting problem deserving further
investigation. We hope that the theoretical results pre-
sented in this paper will stimulate more experiments to
observe the quantum interference or spin-parity effect in
nanoscale single-domain ferromagnets.
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its hospitality. R.L. also thanks Zhi-Rong Liu, Jian Wu and
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Appendix A: Evaluation of the preexponential
factors

In this appendix we review briefly the procedure to calcu-
late the preexponential factors in the WKB tunneling rate
due to the small fluctuations about the classical path, and
then apply this procedure to the FM system with trigonal
crystal symmetry (considered in Sect. 3).

In reference [2], Garg and Kim have presented gen-
eral formulas for calculating both the WKB exponent and
the preexponential factors in the tunneling rate (MQT)
or the tunneling splitting (MQC) for the single-domain
FM nanoparticles, without assuming a specific form of
the magnetocrystalline anisotropy and external magnetic
field. Here we explain briefly the basic idea of this calcula-
tion. Such a calculation consists of two major steps. The
first step is to find the classical, or least-action path, which
gives the WKB exponent. The second step is to expand
the Euclidean action to second order in the small fluc-
tuations about the classical path, and then evaluate the
Van Vleck determinant of the resulting quadratic form.
Writing θ (τ) = θ + θ1 and φ (τ) = φ+ φ1, where θ and φ
denote the classical path, one obtains the Euclidean action
as SE [θ (τ) , φ (τ)] ≈ Scl+δ2S with δ2S being a functional
of θ1 and φ1. Under the assumption that Eθθ−cot θEθ > 0,
where Eθ = ∂E/∂θ and Eθθ = ∂2E/∂θ2, the Gaussian in-
tegration can be performed over θ1, and the remaining
φ1 path integral is casted into the standard form for one-
dimensional motion. As usual there exists a zero mode,
dφ/dτ , corresponding to a translation of the center of the
instanton, and a negative eigenvalue in the MQT problem.
This leads to the imaginary part of the energy, which cor-
responds to the quantum tunneling escape rate from the
metastable states of the system. And the resonant tun-
neling splittings of the ground state in the MQC problem
can be evaluated by using the similar method [2]. What
is need for the calculation of the tunneling rate (MQT) or
the tunneling splitting (MQC) is the asymptotic relation
of the zero mode, dφ/dτ , for large τ

dφ/dτ ≈ ae−µζ , as ζ →∞. (A.1)

The new time variable ζ in equation (A.1) is related to
τ as

dζ = dτ/2A
(
θ (τ) , φ (τ)

)
, (A.2)

where

A
(
θ, φ
)

= ~S2 sin2 θ/2V
(
Eθθ − cot θEθ

)
. (A.3)

The partial derivatives are evaluated at the classical path.
Then one instanton’s contribution to the tunneling rate for
MQT or the tunneling splitting for MQC (not including
the phase factor generated by the topological term in the
Euclidean action) is given by [2]

|a| (µ/π)1/2
e−Scl . (A.4)

Therefore, all that is necessary is to differentiate the clas-
sical path (instanton) to get dφ/dτ , then convert from
τ to ζ according to equations (A.2, A.3), and read off a
and µ by comparison with equation (A.1). If the condi-
tion Eθθ − cot θEθ > 0 is not satisfied, one can always
perform the Gaussian integration over θ1 and end up with
a one-dimensional path integral over φ1.

For the FM system with trigonal crystal symmetry (in
Sect. 3), we find that

Eθθ − cot θEθ ≈ 2K ′ +O (K) > 0. (A.5)

So θ1 can be integrated out. It is easy to show that as
ζ →∞,

dφ

dτ
= 25/2 V

~S
√
KK ′ exp

(
−

3
√

2

√
K

K ′
Sζ

)
, (A.6)

where K = K ′2, K ′ = K1 − (3/2)K2, and K
′
�

K > 0. Thus, |a| = 25/2 (V/~S)
√
KK ′, and µ =(

3/
√

2
)√

K/K ′S. Substituting in the general formula
(A.4), and using equation (10) for the classical action, we
obtain one-instanton’s contribution to the tunneling level
splitting ~∆ as expressed in equation (9).

The calculation of the tunneling splitting for the FM
system with hexagonal crystal symmetry (in Sect. 4) can
be performed by using the similar method, and we will
not discuss it any further.

Appendix B: The equivalence of the effective
Hamiltonian method with the dilute
instanton-gas approximation

In this appendix, we show that the effective Hamiltonian
approach is equivalent to the dilute instanton-gas approx-
imation for the FM systems with trigonal and hexagonal
crystal symmetries, respectively.

For the trigonal crystal symmetry, the eigenstates of
the effective Hamiltonian (Eqs. (13, 15, 16)) are found to
be

| 1) =
1
√

3
(| 1〉+ | 2〉+ | 3〉) ,

| 2) =
1
√

3

(
| 1〉 − e−iπ/3 | 2〉+ ei2π/3 | 3〉

)
,

| 3) =
1
√

3

(
| 1〉 − eiπ/3 | 2〉+ e−i2π/3 | 3〉

)
, (B.1)

with corresponding eigenvalues

E = −2~∆ cos

(
2S

3
π

)
, 2~∆ cos

(
2S + 1

3
π

)
,

2~∆ cos

(
2S − 1

3
π

)
, (B.2)
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where ~∆ has been clearly shown in equations (9, 10), and
S is the total spin of the single-domain FM nanoparticle.
After some algebra, we obtain that

eM |1〉 =
1
√

3
eM (|1)+|2)+|3))

=
1
√

3

{[
e(p+q) + 2e−(p+q)/2 cos

(√
3

2
(p− q)

)]
|1〉

+

[
e(p+q) − e−(p+q)/2

(
cos

(√
3

2
(p− q)

)

−
√

3 sin

(√
3

2
(p− q)

))]
|2〉

+

[
e(p+q) − e−(p+q)/2

(
cos

(√
3

2
(p− q)

)

+
√

3 sin

(√
3

2
(p− q)

))]
|3〉

}
, (B.3)

where p = q∗ = e−iS2π/3. Therefore, we obtain the same
Euclidean transition amplitudes as shown in equation (12)
for the FM nanoparticle with trigonal crystal symmetry.

Now we turn to the FM system with hexagonal crystal
symmetry. For this case, the eigenstates of the effective
Hamiltonian are found to be

|1) =
1
√

6
(|1〉+ |2〉+ |3〉+ |4〉+ |5〉+ |6〉) ,

|2) =
1
√

6

(
|1〉+ eiπ/3 |2〉+ ei2π/3 |3〉

− |4〉+ ei4π/3 |5〉+ ei5π/3 |6〉
)
,

|3) =
1
√

6

(
|1〉+ e−iπ/3 |2〉+ e−i2π/3 |3〉

− |4〉+ e−i4π/3 |5〉+ e−i5π/3 |6〉
)
,

|4) =
1
√

6
(|1〉 − |2〉+ |3〉 − |4〉+ |5〉 − |6〉) ,

|5) =
1
√

6

(
|1〉 − eiπ/3 |2〉+ ei2π/3 |3〉

+ |4〉+ ei4π/3 |5〉 − ei5π/3 |6〉
)
,

|6) =
1
√

6

(
|1〉 − e−iπ/3 |2〉+ e−i2π/3 |3〉

+ |4〉+ e−i4π/3 |5〉 − e−i5π/3 |6〉
)
, (B.4)

and the corresponding eigenvalues are

E = −2~∆ cos

(
S

3
π

)
, 2~∆ cos

(
S + 1

3
π

)
,

2~∆ cos

(
S − 1

3
π

)
, 2~∆ cos

(
S

3
π

)
,

−2~∆ cos

(
S + 1

3
π

)
,−2~∆ cos

(
S − 1

3
π

)
,

(B.5)

where ~∆ has been shown in equations (20, 21) for the
hexagonal crystal symmetry. Using the similar method,
we obtain

eM|1〉 =
1
√

6
eM (|1) + |2) + |3) + |4) + |5) + |6))

=
1
√

6

{[
cosh (p+q)+2 cosh

(
1

2
(p+q)

)
cos

(√
3

2
(p−q)

)]
|1〉

+

[
sinh (p+q) + sinh

(
1

2
(p+q)

)
cos

(√
3

2
(p−q)

)
+
√

3 cosh

(
1

2
(p+q)

)
sin

(√
3

2
(p−q)

)]
|2〉

+

[
cosh (p+q)−cosh

(
1

2
(p+q)

)
cos

(√
3

2
(p− q)

)
+
√

3 sinh

(
1

2
(p+ q)

)
sin

(√
3

2
(p−q)

)]
|3〉

+

[
sinh (p+q) −2 sinh

(
1

2
(p+ q)

)
cos

(√
3

2
(p− q)

)]
|4〉

+

[
cosh (p+ q)− cosh

(
1

2
(p+ q)

)
cos

(√
3

2
(p− q)

)
−
√

3 sinh

(
1

2
(p+ q)

)
sin

(√
3

2
(p− q)

)]
|5〉

+

[
sinh (p+ q) + sinh

(
1

2
(p+ q)

)
cos

(√
3

2
(p− q)

)
−
√

3 cosh

(
1

2
(p+q)

)
sin

(√
3

2
(p−q)

)]
|6〉

}
, (B.6)

where p = q∗ = e−iSπ/3. Then the same results are ob-
tained for the Euclidean transition amplitudes as shown
in equation (23) for the FM nanoparticle with hexagonal
crystal symmetry.

In this appendix, it has been shown that the effec-
tive Hamiltonian approach is equivalent to the dilute
instanton-gas approximation by calculating the Euclidean
transition amplitudes between the energetically degener-
ate easy directions for the trigonal and hexagonal crys-
tal symmetries. The same results are obtained for each
case. However, as shown in Sections 3 and 4, and in this
appendix, the effective Hamiltonian approach has the ad-
vantage of being very simple and direct. Using which one
immediately obtains the eigenvalues and eigenstates, and
the degeneracies of the eigenstates can be analyzed in de-
tail.

References

1. E.M. Chudnovsky, L. Gunther, Phys. Rev. Lett. 60, 661
(1988).

2. A. Garg, G.-H. Kim, J. Appl. Phys. 67, 5669 (1990); Phys.
Rev. B 45, 12921 (1992).

3. M. Enz, R. Schilling, J. Phys. C, Solid State Phys. 19, 711
(1986); ibid., 1765 (1986).

4. M.-C. Miguel, E.M. Chudnovsky, Phys. Rev. B 54, 388
(1996).

5. G.-H. Kim, D.S. Hwang, Phys. Rev. B 55, 8918 (1997).



J.-L. Zhu et al.: Magnetic quantum coherence in trigonal and hexagonal systems 231

6. J.-Q. Liang, H.J.W. Müller-Kirsten, Jian-Ge Zhou, Z.
Phys. B 102, 525 (1997).

7. E.M. Chudnovsky, L. Gunther, Phys. Rev. B 37, 9455
(1988).

8. G.-H. Kim, Phys. Rev. B 55, 15053 (1997).
9. P.C.E. Stamp, Phys. Rev. Lett. 66, 2802 (1991).

10. E.M. Chudnovsky, O. Iglesias, P.C.E. Stamp, Phys. Rev.
B 46, 5392 (1992).

11. G. Tatara, H. Fukuyama, Phys. Rev. Lett. 72, 772 (1994).
12. S. Takagi, G. Tatara, Phys. Rev. B 54, 9920 (1996).
13. B. Barbara, E.M. Chudnovsky, Phys. Lett. A 145, 205

(1990).
14. E.M. Chudnovsky, J. Magn. Magn. Mater. 140-144, 1821

(1995).
15. J.M. Duan, A. Garg, J. Phys. Condens. Matter 7, 2171

(1995).
16. I.V. Krive, O.B. Zaslavskii, J. Phys. Condens. Matter 2,

9457 (1990).
17. H. Simanjuntak, J. Phys. Condens. Matter 6, 2925 (1994).
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